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It is well known that eikonal solvers provide a fast and accurate way to compute
traveltimes in complex media. However, they only give solutions corresponding
to first arrivals. In . Comput. Phys128 463 (1996)), J. D. Benamou presents
an algorithm which gives a multivalued traveltime solution on the whole domain
considered, by defining subdomains in this domain in such a way that within these
subdomains the traveltime is single-valued and can be found by an eikonal solver
restricted to the subdomain. The subdomains may overlap, buttogether they constitute
the whole domain. The solution on the whole domain is then given by the combination
of the solutions on the subdomains. An approximate realisation of these subdomains,
called bigrays, is given. Inthe present paper we describe some problems the algorithm
shows and give an explanation of their origin. We conclude that the method cannot
be used in the presence of caustics.1999 Academic Press

1. INTRODUCTION

Numerical methods for modelling wave propagation are an important tool in seis|
imaging. One approach is to compute the full wave field by integrating the relevant w
equation using finite element methods, spectral methods, or finite-difference schemes
result is a grid with, at different times, the wave field given in each point. However, th
methods are very slow. Another, much faster, approach is the computation of high-frequ
asymptotic solutions. In an acoustic medium of constant density, given a velocity func
c(x), the asymptotics of the wavefield is described by the eikonal equation

[Vo(x)]* = ()

c(x)2’

giving the traveltime functiog (x), while the amplitude functiol\(x) is a solution of the
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transport equation
V- [A%(x)Ve(x)] = 0. )

These equations can be solved by raytracing or by eikonal solvers. Raytracers shoot |
from a source pointin various directions and compute the raypath, together with traveltir
and amplitudes at points along the raypath. One may obtain data between the rays
interpolation.

In order to find traveltimes and amplitudes everywhere in a computational domain, re
tracing as such is not satisfactory in cases where there are areas through which very few
pass, since in these shadow zones interpolation is not reliable. A fast and elegant solutic
this problem, thevavefront construction methois described in [2]. The method is based
on infill shooting; when the distance or angle between two rays exceeds a certain criti
value, an extra ray is started. Its starting position and direction is found by interpolation

Here we consider another fast method to compute traveltimes in complex velocity mc
els, namely by solving the eikonal equation using finite difference methods. Instead
computing the traveltimes in points along a set of rays, this leads to solutions in each pc
on a grid in the domain that we consider and, thus, avoids problems in the shadow zon

Fermat’s principle states that a ray always takes a path of extremal traveltime to go fre
one point to another. Hence, a solution of the eikonal equation at each point in the domai
given by the minimum traveltime from the source to the considered point over all possik
paths contained in the domain. This is called the viscosity solution. In the next section
will describe a numerical algorithm proposed in [3] to find the viscosity solution.

The algorithm given there does not always lead to a complete solution. This is caused
the fact that in many velocity models there are points which are connected by more tt
one ray to the source. Hence, the traveltime function becomes multivalued. The visco:
solution only gives the time of the first arrivals (minimal traveltime) and thus is not comple
in many cases. Later arrivals correspond to local traveltime minima, to maxima, or to sad
points. A possible solution to the problem in case of local minima is proposed in [1] ar
will be explained in Section 3. The idea is that these solutions can in principle be found
defining subdomains in the computational domain, called big rays, in such a way that witt
these subdomains the traveltime is single-valued. The big rays may overlap, but toget
they constitute the whole domain. The multivalued solution on the whole domain is the
given by the combination of the single-valued solutions on the big rays. In Section 4 v
give examples in which multivalued traveltimes are computed using this algorithm. It the
becomes clear that the method is not always very accurate. We give an error analysis wi
indicates under which conditions the method can be used. An explanation of the theoret
background of the problems will be given in Section 5. It is found there that traveltime
computed along a ray which grazes a caustic between the source and the receiver are al
(local) maxima in at least one direction. Hence, we conclude that the big ray method can
be used in the presence of caustics.

2. THE VISCOSITY SOLUTION

In a first-order finite-difference scheme, the derivative of a function in a point onl
depends on the value of the function in that point and its neighbours on the grid. Theref
the eikonal equation (1) in each point becomes an algebraic equation depending on
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value of¢ at that point and at its neighbouring points. In [3] a first-order finite-differen
scheme is given to find the viscosity solution. We describe this method for two dimensi
but an obvious generalision to three dimensions exists.

In terms of the slowness(x) :=1/c(x) the eikonal equation reads

IVo(X)| =n(x) ing, 3)
p(x) =¢® onaQ,

where2 is an area in the subsurface where the velocity model is givendéné its
boundary, withp® a given boundary condition. In the following we will use the obviou
notation

Aij = A, Zj), i=1...,M; j=1...,N, (4)

for an arbitrary functiomA(x, z) on anM x N grid. Define left and right derivatives in both
spatial dimensions as

Df ¢y = ¢i+11x_ Bij . Digy = ¢i,j+22_ }ij 7 o
Doy = &ij _Aﬁi—l,j’ D; ¢y = bij —Aﬁi,j—l_
Furthermore, let the functiog; (a, b, c, d) be defined by
gij (@ b, c,d) = vmax[@"? (b-)2 + maxch?, (d)? — nj, (6)
where
at :=max0,a), a :=min(, a). )
Then a first-order approximation of the eikonal equation is given by
i (Dx ¢ij. DY ¢ij, Dy ¢ij, Dy ¢ij) =0 inQ, @®)

Pij = ¢i(jb) onos2.

This can be seen by substituting in (8) the first-order Taylor expansions of the left and 1
derivatives

9
Dif¢ij = 8—¢(Xi, zj) + O(AX),
X
96 )
Digij = E(Xi, zj) + O(Az).
When(d¢/3x) (X, z;) is positive (resp. negative) the contribution to (8) comes fng;;
(respD; ¢ij). Inboth cases the contribution equél® /3x) (X, z;) + O(AX). Using similar

arguments fofd¢/dz)(x, z;) leads to

0ij (Dx ¢ij, DY ¢ij, D; ¢ij, D i)

8¢\ 2 09\ *
(Y 2+ () ey myromn=0. a0

which is indeed a first-order approximation of the eikonal equation (3). It will become cl
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why we choosey;; in this way when we describe some propertiegipfand an algorithm
to solve (8) numerically.

1. For fixed values ofi.1 j, ¢i—1j. ¢i,j+1, andei j_1, gj is a nondecreasing function
of ¢ij. This can be easily understood when we realise that, with increggingD; ¢ij)*
and(D; ¢ij)" are nonnegative and nondecreasing, Wi ¢;; )~ and(Dj ¢;;)~ are non-
positive and nonincreasing.

2. Forfixedvalues ai11 j, ¢i—1, i, ¢i j+1, andgi j_1, the values of in the neighbouring
points, gi+1,j, Gi-1,j, 9,j+1, and g j—1 are nonincreasing functions ¢f; by a similar
argument.

3. Iim(,,ij_)oo gij = o0.

Using this, the traveltimes of? can be found by the following algorithm.

1. Takeg;; =0 at the source position and a big value on the boundary of the subsurfa
area. Big here means at least bigger than the viscosity solution will be. A suitable value «
be easily estimated from the maximum valuenadver the area. These together form the
boundary conditions 082 and will be fixed during the process of computation. Further-
more, givep;; a small starting value of2, which is the rest of the grid. Here small means at
least smaller than the viscosity solution, which in practice leads to the c#igie€0. This
implies that everywhere oft we haveg;; = —n;; to start with.

2. Now update the gridpoints i2 one by one by computing the value of the traveltime
¢ij which, together with the traveltime values at neighbouring points, satisfies (8). Tt
fact that only max((Dy ¢ij)™)?, (D ¢ij)7)? and max{(D; ¢ij) )2, (DF ¢ij))?] play
a rdle in (8) guarantees that the minimal traveltime (i.e., the traveltime obtained followin
the fastest route) to each point is computed. This is easily understood when one real
that the contribution from max(D; ¢; )yhH2, ((D;F ¢ )7)?]is indeed the contribution from
min[¢i_1 i, ¢i+1,;] and analogously in the-direction. As¢;; increasesy;; increases from
—n;; to zero. However, in neighbouring poirgsnay decrease. Hence, this updating proce-
dure has to be repeated several times in order for the algorithm to converge. It was pro
in [3] that it indeed converges to the viscosity solution. The number of steps needed is
the order of the number of gridpoints in one coordinate.

3. BIGRAY TRACING

It was mentioned already in the Introduction that the viscosity solution is not alway
complete. In many velocity models the traveltime function becomes multivalued becat
there are points which are connected by more than one ray to the source. All these r
satisfy Fermat'’s principle of extremal traveltime, although for only one of them this is
global minimum; the other rays correspond to local traveltime minima, to maxima, or 1
saddle points. The viscosity solution only gives the time of first arrival and, thus, is ni
complete in many cases. A solution to the problem in case of local minima is describ
in [1]. It is based on the idea that if there are rays between points which correspond t
local minimum in traveltime when all raypaths in the domain are considered, then it mt
be possible to find a smaller domain around this path for which the traveltime is an absol
minimum. This small domain around the ray is called the big ray. By covering the who
domain by big rays, computing the viscosity solution in these small domains and combini
the results one finds a multivalued solution on the whole domain.
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In two dimensions an approximation of the big rays is found by shooting a small nunr
of rays, say 10 or 20, from the source in all directions by using a raytracer; the big rays
then defined as the area between two successive rays [1]. The combination of the solt
in these big rays is an approximation of the multivalued solution of the eikonal on
whole domain. We stress that there is no guarantee that all multivaluedness within a bi
is removed by the above described procedure. There could still be some intersecting
within the domain and in the point where they intersect the viscosity solution will again o
give the first time of arrival. In the next section we will illustrate this with some example

4. EXAMPLES

In order to explain the shortcomings of the algorithm we first consider a simple exam
found in [1]. It consists of a depth-dependent velocity field, a two-layer model witt
smoothed interface (see Fig. 1). We shoot 20 rays from an upper corner of a gridded ve
of this model (400« 200 gridpoints) and define 19 big rays as the gridpoints betwe
two successive rays. We used the traveltimes computed along the rays by the raytra
boundary conditions to compute the viscosity solution in this big ray (instead of takin
big value at the boundary). The resulting wavefronts are shown in Fig. 4.

Careful inspection shows that the reflected wavefronts are not continuous at the jun
between two big rays. This effect is caused by two fundamental shortcomings of the ¢
rithm. To understand this, consider the dark grey bigray in Fig. 2. The two rays which de
this big ray intersect and the big ray falls into two separate domains. In the left domair
find part of the incoming wavefront, while in the right domain part of the reflected wavefr
is expected to be found. We concentrate on this right part.

The first problem is that at the poiBt where the rays intersect there is multivaluednes
both rays arrive at that point at a different time, in general. The algorithm will compute
traveltimes in the right domain taking into account only the lowest of these traveltimes
as if a point source was switched ontatThis leads to traveltimes which are too low, ir
particular in the upper part of the domain. On the upper limiting ray traveltimes shoulc
computed, starting from the highest traveltimeSin,. Hence, the traveltimes computed or
this ray are too low by an amounit =t, —t;.
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FIG. 1. The velocity as a function of depth for a two-layer model with a smoothed interface.
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FIG. 2. Araytracer shoots 20 rays. Two big rays are indicated.

On the lower limiting ray, before the point where this ray is reflected, traveltimes ai
computed which are correct. However, these are not the traveltimes corresponding to
reflected wavefront which should be computed in the right part of the big ray. On this part
the lower limiting ray traveltimes are computed corresponding to the incoming wavefror
After the point where the ray is reflected another effect is visible. In a [foont this part of
the ray the algorithm computes the traveltime taking the fastest routeSronRR, instead
of following the ray. A similar effect plays a role in a poiRtinside the big ray. In order to
compute the correct traveltime a ray should be followed which lies between the two limitir
rays and is reflected outside the big ray. The algorithm takes a “short cut”; it arri@sestin
timet; and takes the fastest route frddo P.

These problems become even more visible when we shoot only 10 rays to start (
Fig. 3), while it seems to almost disappear when more rays are shot (see Fig. 5 for the c
of 40 rays). This is to be expected: in the limit where the big rays become smaller0.
Furthermore, the smaller the big rays are the more accurately the algorithm is forced
follow the actual raypath to a point on the reflected wavefront and the smaller the traveltir
error is in this point, due to the algorithm taking a faster route. In order to get an idea for hc
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FIG. 3. Wavefronts computed using nine big rays.
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FIG. 4. Wavefronts computed using 19 big rays.

many rays the method becomes reasonably accurate, it seems to be worthwhile to pe
an error analysis.

We performed this analysis for a somewhat more general depth-dependent velocity n
which we could solve exactly. It consists of two layers with an interface at dbjptlvhich
the velocity increases linearly as

V =V +kiz forz <d,
V=V,+k(z—d) forz>d,

(11)

with
Vo = Vi + kid, (12)

in order forV (t) to be continuous a = d, and withk; < k,. Here the positive-direction
points downwards. In the Appendix we analyse this model, compute raypaths and w
fronts, and give exact expressions for the arrival tijat the surface as a function of the
distancex, to the source. Rays and wavefronts are computed using the wavefront cons
tion method forvV; = 100Q d =200Q k; = 0.25, andk, = 1.0. The resultis shown in Fig. 6.
In Fig. 7 the traveltimé, is given as a multivalued function of the offset
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FIG.5. Wavefronts computed using 39 big rays.
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FIG. 6. Rays and wavefronts computed for the velocity model given in Egs. (11) and (12).

We compared the exact expressions found in the Appendix with numerical results obtait
with the big ray method for an increasing number of big rays. The numerical results (gr
curve) are plotted, together with the exact results (black curve) in Figs. 8 and 9 for
(resp. 39) big rays. There are two types of inaccuracies.

The first one becomes clearly visible when comparing Figs. 8 and 9; when too few t
rays are defined, part of the cusp is not found. This is caused by the fact that when
big rays are too big, different raypaths to the same point lie within the same big ray a
only the first arrival is found by the algorithm. When the big ray is split up into smaller
partly overlapping bigrays, different raypaths to the same point will be contained in differe
bigrays and more later arrivals will be found.

branch?2
branch3]

branchl

Traveltime(s)

2000 4OIOO 60.00 80.00
Offset (m)

FIG. 7. The arrival timet, at the surface as a function of the distamgéo the source for the velocity model
given in Egs. (11) and (12).
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FIG. 8. Black curve: exact solution fdy(x,). Grey curvet,(x,) computed using the big ray method with
nine big rays, both for the velocity model given in Egs. (11) and (12).

The other inaccuracy is in the computed traveltimes themselves and is related tc
discontinuities in the wavefronts discussed above. We compared the traveltimes comj
by the big ray method for different numbers of bigrays, with the exact result. Traveltin
are compared which lie on the same branch of the cusp. As explained above, the bi
method only computes the traveltime corresponding to the first arrival in cases where |
than one raypath to a point is contained in the same big ray. In such cases we compare
traveltime with the first arrival computed in the exact model. The result is given in Fig.
For more thant60 big rays the average relative error

tCOI’T\[I) - texact

Aty = (13)

texact av

converges to a minimal value ofd®5 x 10-3. For traveltimes upa 8 s and velocities up to

Arrival time(s)
b (¥5 ] [1=9 wu Y e |

=

2000 2000 6000 8000
Offset (m)

FIG. 9. Black curve: exact solution fdr(x,). Grey curvet,(x,) computed using the big ray method with
39 big rays, both for the velocity model given in Egs. (11) and (12).



158 R. H. RIETDIJK

0.002
0.00175
0.0015
0.00125
0.001
0.00075
0.0005
0.00025¢}
0

Average relative error

20 40 60 80 100
Number of bigrays

FIG. 10. The average relative error as a function of the number of big rays, for the velocity model given i
Egs. (11) and (12).

4500 m/s this leads to errors up to 9 m, which is usually acceptable for seismic imagir
Notice that the main difference in computational costs of using more big rays is in the initi
raytracing. However, this is cheap, compared to finding the viscosity solution within tt
big ray and, thus, it is advisable to shoot at least 60 rays over 90

5. CONJUGATE POINTS AND CAUSTICS

In order to investigate the origin of the problems found in the examples described in t
previous section we have a closer look at Fermat'’s principle. We consididineensional
case in general.

Fermat’s principle is a special case of the action principle. The action principle states
a physical path fronfA to B corresponds to an extremum of the relevant action functional,

Sx] = /bL(x, x) dt, (14)

wheret is a parametrisation along the patiit) (i =1, ..., d) with x(a) = Aandx(b) = B.

An overdot denotes a derivative with respect.ttin order for the pathx; (t) to correspond

to an extremum of[x], this action should be invariant under all infinitesimal perturbations
of the path which vanish at the endpoints. When the position variablesare varied in
such a way thaix; (a) = §x; (b) =0, the variation of the action reads

b
§96x] :/ {Lx8x + Ly 8% } dt
a

:/ab{in—%(in)}(Sxidtzo. (15)

Summation over identical indices is implied from 1dpunless explicitly indicated other-
wise. Equation (15) implies the Euler-Lagrange equations

d
Ly — a(LX‘) =0, (16)

which describe a physical path.



NOTES ON BIG RAY TRACING 159

Fermat’s principle states that a ray from a source pAitd a receiver irB takes a path
of extremal traveltime. The traveltime along a path as a function of the rp(@betaken is
given by

b
Slx] = / n(x(t)1x] dt. (17)

Itis obvious that the traveltime does not depend on the explicit parametrisatitine path;
S[x] is indeed invariant under reparametrisations f(t). We would like to takeg[x] as
the action functional for this problem and derive the ray equations by an action princig
However, since perturbations rf(t) along the path will not give any physical informa-
tion, we should first remove the reparametrisation invariance in the action. Therefore
introduce an extra variabM(t) and define a new action function&l[x], instead ofS[x],

b1 Y,
sl[x]=/ {W|X|2+En(x)2}dt. (18)

This action is again reparametrisation invariant whigh) transforms as a one-form,
-~ dt
V) = d_fva). (19)

In fact the actior5[x] represents a whole series of action functionals for different choic
of V (t), all describing the same physical problem. The ac8r] is obtained fromS;[x]
by eliminatingV (t), using its Euler—-Lagrange equation,

X (20)

n(x)

This is allowed becausé is not a dynamical field (i.e., its time derivative does not appe
in the action). However, by choosing(t) this way, the reparametrisation invariance is nc
removed as we want, since the right-hand side of (20) transforms as required by (19). On
remove the reparametrisation invariance in the action by chod&ing= f (t) for somef (t)
not transforming as a one-form. A reparametrisaties f(t) of the actiong[x] obtained
this way is then equivalent to a different choice YorV () = (dt/dt) f (t) =: g() # f (),
which leads to a different but gauge-equivalent action. All gauge-equivalent actions o
form (18) for different choices o (t) can be found fron§x] this way. In these actions
the path is labelled by different parameters, but the same physics is described. A conve
gauge condition will turn out to be

1

The action then reads

b n2 1 b
S[x]:/ {2|X|2+2}dt=:/ L(x, X) dt. (22)

This is the action we will continue to work with. Itis equivalentSgx] and, thus, tds[x],
if we supplement it explicitly with the Euler—Lagrange equation ¥grwhich does not
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follow from it anymore. Equations (20) and (21) together give the constraint

= o0 (23)

This explains why (21) was a convenient choice ¥it) to fix the reparametrisation in-

variance;x can now be interpreted as the velocity d@rak the time-parametrisation along
the raypath. Defining the momentum,

pi = LXi’ (24)

Hamilton’s equations are found from the Euler—Lagrange equations,

X =n—2p,
L (25)
P = .
and (23) yields the equation
[Pl = n(x). (26)

A necessary condition for a solution of these equations to correspond to a minimum of 1
action is that the second variatiéfS is nonnegative for solutions of the Euler-Lagrange
equations (16),

1 b
SZS[SX] = é/ {inXJSXicSXj +2inxj5Xi5Xj + inxj55(i55(j}dt
a

b
= / {Pij 0% 8X; + Qjj 6% 6X; +Rij5Xi5Xj}dtZO. 27)
Ja

In the last step we performed a partial integration usixga) = §x; (b) = 0 and defined

1

Pj = éinxJ,
1 d

Qij = 2|:LXiXi - a(LXin) 9 (28)
1

Rij = E[LX,XJ - ijx‘]-

Condition (27) is necessary but not sufficient 8] to have a minimum. The actiof x]
has a minimum if and only if

896X] =0 A 826X] =0 A --- A 82 1G6x] =0 A 82"Y[6x] > O (29)

for somen > 1. We consider the simplest cases 1.
We start by giving the definition of a Jacobi field [5].
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DEerINITION 1. Letx (t) be an extremal path (i.e., a solution of the Euler—Lagrant
equations (16)) fronx; (a) to x; (b). Define a one-parameter variation,

(s, 1) (—e, €) x [a,b] > RY (30)

of x; (t), not necessarily keeping the endpoints fixed, with the following properties. The r
& (s, 1) isC™ andg; (0, t) = x; (). Furthermore, for ang, fixed, & (s, t) is an extremal path
from & (s, @) 10 & (Sp, b). A Jacobi field along (t) is then given by the variation vector
field,

9&;
MW=£WM. (31)

Consider the extremad (t) and a neighbouring extremgl(§s, t) with infinitesimalss.
Both extremals satisfy the Euler—Lagrange equations (16). Expagdbsgt) as a function
of §sone finds thatthe Jacobifiellkt) is a solution of the second-order differential equatio

d

.1 1 1.
—dt[P.jJi + SR Ji:| +5(Qi + Q) I+ SRjiJi = 0. (32)

This implies that a Jacobi field is completely determined by its initial conditions,

@ 93
Ji (@), E(a)- (33)

DEFINITION 2. Given an extrema; (t) the pointM* = (a*, x; (a*)) (a* # a) is said to
be conjugate to the poiMl = (a, x; (@)) if there exists a nonzero Jacobi fieldt) along
Xi (t) which vanishes foa anda*.

We can now formulate the following two theorems [6].

THEOREM1. The quadratic functional defined (&7) is positive(negativée definite for
all variations§x;, satisfyingsx; (a) = éx; (b) =0 if and only if

1. B; is a positive(negativg definite matrix.
2. (t, x(t)) contains no points conjugate ta, x(a)) fort € [a, b].

THEOREM 2. If the quadratic functional defined i(27) is nonnegativgnonpositive
definite for all variationsx; satisfyingsx; (a) = éx; (b) = 0and if R; is a positive(negativé
definite matrixthen(t, x(t)) contains no points conjugate ta, x(a)) for t € [a, b).

We will use these definitions and theorems to check whed#$x] is positive definite.
P is given by
This is indeed a positive definite matrix.

Now we turn to the second condition in Theorem 1; are there points conjugate to a g
source point, i.e., is there a one-parameter family of extremals satisfying the condit

given in Definitions 1 and 2? In the following we will construct such a family of extrema
A raypathyx; (t) is a solution to Hamilton’s equations determined by its initial point

X (@) = A (35)
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and its initial direction

. & (o)
i@ =——. 36
Xi (@) n(A) (36)
Heree(a) is a unit vectore '~ given by the angles = (a1, . .., ag_1). Given a source

position A; we parametrise the position spaceds, o). Aray is defined ag; (t, o = o),
while a wavefront is given by; (t =to, o). This implies

0X X
— 11— (j=1...,d=-1), 37
T (j ) (37)

since rays are orthogonal to wavefronts. The Jacobian of the coordinate transformatio
given by

X1 0X1 90Xy
9t doey  dag
dXo  IX2 dX2
Jta)i=|08t dax  dag|, (38)
dXg 0Xg dXq
9t doen dag

which is nonzero in general.

DEFINITION 3. A point X(t., ¢) is called a caustic point with respect to the source
X(a, o) if

j(tc, ac) = O. (39)

The set of all caustic points is called the caustic set.

For the example described in [1], given in Fig. 5, the caustic set is drawn in Fig. 11.
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FIG. 11. Rays in grey and caustic line in black for the velocity model given in Fig. 1.
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Consider a ray; (t, ac) which grazes the caustic. On the caustic the Jacobian giver
(38) vanishes. Hence, in view of (37), there must exist a véeior R4\ {0} for which

d-1 Ix:
Za—{(tc, ac)daj = 0. (40)

j=1 0]

We define a one-parameter faméiy(s, t) of neighbouring extremals as a fan of rays shc
from the same sourcd; = x; (a) in directions close tax. in the following way:

&(st) =X (1, ac + SSax). (41)
This defines a Jacobi field
d-1
0&; 0Xi
IO =200 =3 =t ac)bay. (42)

=177

Close to the source i\, Hamilton’s equations can be solved using the initial conditior
(35) and (36), giving

& ()

X(t o) = A+ (t—a) o (43)
Hence,

x| _q_a l o8] _

901 e~ T VR By @y

fori=1,...,dandj=1,...,d— 1. Therefore the Jacobi field (t) vanishes at =a.

It also vanishes on the caustic because of (40), but it is nonzero in general&inae)

is nonzero in general. The fact that there exists a nonzero Jacobi field which vanishe
t =a and fort =t; implies that all causic points(t;, a¢) are conjugate to the source point
X(@, ).

The reverse is also true: all pointga*, ap) on a rayx(t, ag), which are conjugate to
X(a, ap) (@* # a) are caustic with respect tqa, o). This is proven as follows. Given that
on a rayx(t, ap) the pointx(a*, ap) is conjugate tx(a, ), Definition 2 says that there
is a Jacobi field}® (t) alongx(t, ap) such that

3@ =3%@) =0, (45)
but
3ty € (a,a") : 3%(ty) # 0. (46)

Given that a Jacobi field (t) is completely determined by its initial conditiodga) and
d J/dt(a), a basis of Jacobi fields for which(a) vanishes consists dfindependent fields
Ji(l) ®, ..., Ji(d)(t). We construct such a basis explicitly. Irdadimensional space there
ared — 1 independent directionsx® (k=1, ..., d — 1) in which the initial direction of
a ray can be varied. Therefore, we can definel one-parameter families of rays as

96 =x(t,ag+ssa®) k=1,...,d-1. (47)
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A dth ray family is defined as
£V, = x(t+s(t—a), ao). (48)

From these ray familied Jacobi fields are found

k) d-1
IO = 85—i(o, =Y %(t, ag)da® (k=1,...,d-1),
: S 0o !
j=1 ) (49)
3‘5(d)
JPM = =00 = (- a) (t o).

It is straightforward to check that these fields vanish indeed at the sourcexp@ind,).
Furthermore, they are nonzero and linearly independent in general, since the Jacol
J (t, ) does not vanish except for caustic points.

The Jacobi fieIdJi(o) (t) can be expressed in terms of this basis

d-1

X
JO) = Pyt —a) (t a0+ 3 P (t, ag)sa (50)
ot oaj
for some set of parameteR;) (i =1, ..., d). We know from (45) thaﬂi(o)(a*) vanishes.
This implies, together with (37), that
Pay =0 (51)
and
d-1 3X d-1 3
(@, o)dd) = Y P(k)—(a ap)sal = 0. (52)
— Qo oaj
=1 j.k=1
From this last equation we find
J @, ap) = 0. (53)

Hencex(a*, ap) is caustic with respect to the sourcei@, ). This leads to the following
theorem.

THEOREM 3. Given aray Xt, «r), a point x(@*, ) is conjugate to Xa, «) (a* #a) if
and only if Xa*, «) is caustic with respect to(a, o).

This theorem leads to the following conclusions:

1. Foraraypath endingin acaustic poimtf a*) there are variations for whicif §[5x] <
0, according to Theorem 1. There is at least one direction of variation for Wh@hix] =
in that case, namely the Jacobi fie]iﬁ’) (t) given in (50),

d-1

© jor X
P0=>3 -

=1 9%

(54)
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.Ji(o) (t) vanishes fot =a andt =a*, as is given in Eq. (45). Hence, the boundary cond
tions for the variatiox = J© are satisfied. Furthermoréi,(o) (t) is a solution of (32). It
then follows that

“f d o, 1 1 1 .
oz/ —— [P I+ SR IO |+ Qi + Qi3 + SR I £ 3 dt
a | dt 2 2 2

-
— / (P339 + R; VI + Qij 393V dt = §2S[3]. (55)
a

2. The quadratic functional given in (27) is not positive definite in case of a rayp
which contains a caustic point; it follows from Theorem 2 that when there are conjuc
points on the raypath fromto b (b > a*) then there are variations for whiéRS[5x] < 0.

In both this case and in the case whea a* one can derive that for variations along the
path, i.e.sx = f (t)x with f(a)= f(b)=0and f (t) 0,

b 2
829 fx] = %/ (‘:;) dt > 0. (56)

For the present casé ¢ a*) this implies that the variation for whicb?S[6x] <0 must
deform the path itselfThe raypath corresponds to a maximum of the action in the directi
of that variation.Using the big ray method in cases when this happens will not lead to
right result, since this method only deals with (local) minima. Choosing a big ray arot
a ray corresponding to a traveltime maximum or saddle point and computing the visce
solution in this big ray, a solution of minimal traveltime is found, which in most cas
corresponds to a ray (partly) following the big ray boundary; the ray takes a “short ¢
as much as possible. This is precisely what happens with the reflected rays in the exe
given in [1]. Only by choosing the big rays small in such cases can one make the effe
this error small enough. The incoming and the refracted wavefront are found correctly.
traveltimes on these wavefronts are minima, one of which is local.

Notice that, although the refracted rays cross the caGstiliere are no conjugate points
on these rays. Confusion is caused by the fact that a positidd @nd positions in the
whole area where multivalued traveltimes occur) can be labelled by more then one s
coordinatest( o). On a reflected rax(t, a) lays a caustic point, labelled &st., o),
while on a refracted rax(t, «;) this same point in space is labelled @, ), with
(tr, ar) # (L, ac). The pointx (t;, ) is conjugate to the sourcexta, a.), whilex(t;, ar)
is not.

6. CONCLUSIONS

In this paper we studied the big ray tracing algorithm presented in [1] and desig
to compute multivalued traveltimes in complex media. Studying some relevant examj
inaccuracies of the algorithm were found and an error analysis was performed. The
liminary conclusion was that the accuracy of the program is acceptable when one us
least 60 big rays in a 9Ghooting angle. The conclusion of our theoretical analysis is mc
dramatic. The big ray method is based on the idea that all raypaths correspond to (|
minima, which is not always the case, in particular in the presence of caustics. There
although the error becomes acceptable when the big rays are chosen small enough, i
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not seem to be reasonable to present the method as an algorithm to compute multiva
traveltimes.

APPENDIX

In this appendix we analyse a depth-dependent velocity model which can be sol
exactly. It consists of two layers with an interface at depih which the velocity increases
linearly as

V =V; +kiz forz <d,
(57)
V=Vo+ky(z—d) forz>d,
with
Vo = Vi +kid, (58)

in order forV (t) to be continuous a=d, and withk; < k,. Here the positive-direction
points downwards. It is well known that raypaths and wavefronts in linear velocity mode
are circle arcs, with centre and radius depending on the velocity function and the init
angle (see, e.g. [4, pp. 272-276]).

Let us first consider only the top layer. For a ray shot from surface at (0, 0), with initi
angled, with the positivez-direction, the path and traveltime are given by

K=\ (cosH — coshp)
k1 Sinfg ’
= Vi (sing — sinbp) (59)
ky sinfg ’

¢ 1 | tang/2

"k ”(taneo/2>'

All these quantities are parametrisedédhyhe angle of the ray with the positizedirection.
The first two expressions, indeed, describe a circle with radliysk; sin6y) and cen-
tre V1 (costy, —sinby)/ (K1 sinfg). Rays and wavefronts are computed using the wavefron
construction method fov; = 1000,d = 2000,k; = 0.25, andk, = 1.0. The result is shown

in Fig. 6.

Using the expressions given above and analogous ones for rays passing through
second layer, one can find expressions for the arrival position and time at the surface.
distinguish between rays which pass only through the first layer and rays which cross
interface. The critical angle for which the ray grazes the second layer is given by

Vi

SiNfgr 1 = — 60
cr,1 V27 ( )

for which

2
Xa = k_l‘/VZZ — V2. (61)
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We find for6p > cr.1

L 2w
7 Kk tangy
(62)
o 1 n 1+ cosbp
7k \1-—costy/)’

while for 6y < O¢r.1

Vi 2Vi1 = (ka/ k)
o Ky tandy ky SinQO

: 63

t 1|n(1+C0890> L1~ sk 1+ /1 (VZ/V2) sir o (63)

a = - 21000\ L k/k |
ki \1-costh) ki 1—\/1—(V22/V12)sin290

Xa

V1 (V2/V2) sir? oo,

The functionx,(6o) given in (63) has a minimum at

_ - 1—(1— (ki/kp))?
SNfer2 = \/(V§/v12) — (1 - (ka/kp))? >

for which

2
Xo= o \/ (V2= V2)(1— (1— (k/k2))?). (65)
1

In Fig. 7 the traveltime, is given as a multivalued function of the offsgt We distinguish
three branches in this function: branch 1 corresponds 06, 1; branch 2 corresponds to
Ocr.2 < 6o < O¢r.1; branch 3ty < O 2.

In order to compare our numerical scheme to the exact results obtained for this m
we want to compute traveltimes on a grid. Therefore, we eliminated the énfylam the
expressions for arrival position and time and found the following expressiong fqy:

for xa < (2/k1)\/VZ — V7,
2 lea klxa 2
ta= —| 1];
i n(2V1+ (2v1> L)

for (2/ka)y/ (V2 = V2) (1 — (1 — (ka/ ko))?) < X = (2/ k) \/VE = VZ,

taz

19t k#x2 + 4(1 — (ka/k2))?(VF — V7)
ki \ Q- — k¥x2 — 4(1 — (ka/k2))2(VF — VP)

(66)
1 (1 ~ ﬁ) ln(Q_ — kiXaR + 4(1 — (ki/k2)) (V2 — VP) ) .

Tk k2 Q- +kixaR — 4(1 — (ki/ ko)) (V2 — V2)



168 R. H. RIETDIJK

for xa > (2/kny/ (V2 — V2) (1— (1= (ka/ko))?),

ta=

L[ Qe+ KB+ 4 — (/) (VE - V)
ki \ Qi —KPXZ — 41— (k/ko))?(VF — V)

ki ko

where

R = /KB — 4(VZ — V2) (1 - (1 - (ky/k)?),

Qs = {KIXE +4(V2 + (1 — (ke /k2))?(2V2 — V7))

1 (1_ @) |n<Q+ +kiXaR + 4(1 — (ka/ ko)) (V2 — V7)

Qs — kixaR — 4(L — (ki/ka) (V2 — V72

)

+16(1 — (K/ k)2 (VF — V) (VE(L — (ki/ko))® — V7)

T 8VZkiXa(1 — (ki/ ko)) R} 2.
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